A stall is a loss of lift and increase in drag that occurs when an aircraft is flown at an angle of attack greater than the angle for maximum lift. If recovery from a stall is not completed in a timely and appropriate manner by reducing the angle of attack, a secondary stall and/or a spin may result. All spins are preceded by a stall with one wing stalled more than the other. The angle of the relative wind is determined primarily by the aircraft's airspeed. Other factors are considered, such as aircraft weight center of gravity, configuration, and the amount of acceleration used in a turn. The speed at which the critical angle of the relative wind is exceeded is the stall speed. Stall speeds are listed in the Airplane Flight Manual (AFM) or the Pilot Operating Handbook (POH) and pertain to certain conditions or aircraft configurations e.g. landing configuration. Other specific operational speeds are calculated based upon the aircraft's stall speed in the landing configuration. Airspeed values specified in the AFM or POH may vary under different circumstances. Factors such as weight, center of gravity, altitude, temperature, turbulence, and the presence of snow, ice, or frost on the wings will affect an aircraft's stall speed. To thoroughly understand the stall/spin phenomenon, some basic factors affecting aircraft aerodynamics and flight should be reviewed with particular emphasis on their relation to stall speeds. (This advisory circular is principally concerned with and discusses airplanes. However, much of the information also is applicable to gliders.) The following terms are defined as they relate to stalls/spins.
Angle of Attack
.. Angle of attack is the angle at which the wing meets the relative wind. The angle of attack must be small enough to allow attached airflow over and under the airfoil to produce lift. A change in angle of attack will affect the amount of lift that is produced. An excessive angle of attack will eventually disrupt the flow of air over the airfoil. If the angle of attack is not reduced, a section of the airfoil will reach its critical angle of attack, lose lift, and stall. Exceeding the critical angle of attack for a particular airfoil section will always result in a stall.